A syntactical proof of the Marriage Lemma
نویسنده
چکیده
We give a proof of the classical Marriage Lemma 4] using completeness of hyperresolution. This argument is purely syntactical, and extends directly to the innnite case. As an application we give a purely syntactical version of a proof that resolution is exponential on the pigeonhole principle.
منابع مشابه
A simple proof of Zariski's Lemma
Our aim in this very short note is to show that the proof of the following well-known fundamental lemma of Zariski follows from an argument similar to the proof of the fact that the rational field $mathbb{Q}$ is not a finitely generated $mathbb{Z}$-algebra.
متن کاملFuzzy Linear Programming and its Application for a Constructive Proof of a Fuzzy Version of Farkas Lemma
The main aim of this paper is to deal with a fuzzy version of Farkas lemma involving trapezoidal fuzzy numbers. In turns to that the fuzzy linear programming and duality theory on these problems can be used to provide a constructive proof for Farkas lemma. Keywords Farkas Lemma, Fuzzy Linear Programming, Duality, Ranking Functions.
متن کاملعدد تناوبی گرافها
In 2015, Alishahi and Hajiabolhassan introduced the altermatic number of graphs as a lower bound for the chromatic number of them. Their proof is based on the Tucker lemma, a combinatorial counterpart of the Borsuk-Ulam theorem, which is a well-known result in topological combinatorics. In this paper, we present a combinatorial proof for the Alishahi-Hajiabolhassan theorem.
متن کاملTopics in Graph Theory
Abstract. This paper is an exposition of some classic results in graph theory and their applications. A proof of Tutte’s theorem is given, which is then used to derive Hall’s marriage theorem for bipartite graphs. Some compelling applications of Hall’s theorem are provided as well. In the final section we present a detailed proof of Menger’s theorem and demonstrate its power by deriving König’s...
متن کاملEqualising Terms by Diierence Reduction Techniques
In the eld of inductive theorem proving syntactical diierences between the induction hypothesis and induction conclusion are used in order to guide the proof BvHS91, Hut90, Hut]. This method of guiding induction proofs is called rippling / coloring terms and there is considerable evidence of its success on practical examples. For equality reasoning we use these annotated terms to represent synt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 290 شماره
صفحات -
تاریخ انتشار 2003